Pengertian dan Metode Kuadrat
0
komentar
Untuk melengkapi koleksi rumus matematika, kali ini Tim Download Soal akan berbagi rumus matematika yaitu "pengertian dan Metode Persamaan Kuadrat", tulisan sederhana ini diharapkan bisa membantu para siswa SMP, MTs, SMA dan MA guna menghadapi Ujian Nasional tahun depan.
Persamaan Kuadrat merupakan suatu persamaan polinomial berorde 2 dengan bentuk umum dari persamaan kuadrat yaitu y=ax²+bx+c dengan a≠0 dan koefisien kuadrat a merupakan koefisien dari x², koefisien linear b merupakan koefisien dari x sedangkan c adalah koefisien konstan atau biasa juga disebut suku bebas. Nilai koefisien a, b dan c ini yang menentukan bagaimana bentuk parabola dari fungsi persamaan kuadrat dalam ruang xy.
a. Menentukan seberapa cekung/cembung, jika nilai a>0 maka parabola akan terbuka keatas. Begitu juga sebaliknya jika a<0 akan="" kebawah.="" maka="" p="" parabola="" terbuka="">
0>
b. Menentukan posisi x puncak parabola atau sumbu simetri dari kurva yang dibentuk, dengan posisi tepatnya -b/2a.
c. Menentukan titik potong fungsi parabola yang dibentuk dengan sumbu y atau pada saat x=0.
Rumus Kuadratis
Rumus ini biasa disebut juga dengan rumus abc, disebut demikian karena digunakan untuk menghitung akar-akar persamaan kuadrat yang tergantung nilai-nilai a, b dan c.
dengan pembuktian sebagai berikut.
Dari bentuk umum persamaan kuadrat,
bagi kedua ruas untuk mendapatkan a = 1
Pindahkanke ruas kanan
sehingga teknik melengkapkan kuadrat bisa digunakan di ruas kiri.
Pindahkan ke ruas kanan
lalu samakan penyebut di ruas kanan.
Kedua ruas diakar (dipangkatkan setengah), sehingga tanda kuadrat di ruas kiri hilang, dan muncul tanda plus-minus di ruas kanan.
Pindahkanke ruas kanan
sehingga didapat rumus kuadrat
Pada rumus abc diatas terdapat istilah diskriminan atau determinan yaitu notasi dalam tanda akar b²-4ac yang terkadang dinotasikan dengan huruf D.
Persamaan kuadrat dengan koefisien-koefisien riil dapat memiliki sebuah atau dua buah akar yang berbeda dimana akar-akarnya dapat berupa bilangan riil atau bilangan kompleks. Terdapat 3 kemungkinan kasus :
Jadi dapat disimpulkan akan diperoleh akar-akar berbeda jika dan hanya jika D≠0 dan akan diperoleh akar-akar riil jika dan hanya jika D>0.
Terdapat 3 cara dalam menyelesaikan persamaan kuadrat, yaitu :
Jawab :
x2 – 5 x + 6 = 0 (cara memfaktorkan)
<=> ( x-2 ) ( x-3 ) = 0
<=> x- 2 = 0 atau x – 3 = 0
<=> x = 2 atau x = 3
Sehingga himpunan penyelesaiannya adalah {2, 3}
2. Tentukan himpunan penyelesaian dari persamaan x2 + 2x – 15 = 0 !
Jawab : x2 + 2x – 15 = 0 (cara melengkapkan kuadrat sempurna)
x2 + 2x = 15
Agar x2 + 2x menjadi bentuk kuadrat sempurna maka harus ditambah dengan kuadrat dari setengah koefisien (½ .2)2 = 1
Dengan menambahkan 1 pada kedua ruas, diperoleh :
x2 + 2x + 1 = 15 + 1
<=> (x + 1)2 = 16
<=> x + 1 = ± √16
<=> x + 1 = ± 4
<=> x + 1 = 4 atau x + 1 = -4
<=> x = 4 – 1 atau x = -4 -1
<=> x = 3 atau x = -5
Sehingga himpunan penyelesaiannya adalah {3, -5}
3. Tentukan himpunan penyelesaian persamaan x2 + 4x – 12 = 0 !
Penyelesaian : (menggunakan rumus abc)
Berdasarkan persamaan diketahui bahwa a =1, b = 4, c = -12 selanjutnya koefisien tersebut kita masukkan dalam rumus abc.
x1,2 = (- b ± √b2 – 4ac) /2a
<=> x1,2 =( - 4 ± √42 – 4 . 1. (-12) )/2.1
<=> x1,2 = (- 4 ± √16 + 48)/2
<=> x1,2 = (- 4 ± √64)/2
<=> x1,2 = (- 4 ± 8)/2
<=> x1,2 = (- 4 + 8) /2 atau x1,2 = (- 4 - 8 )/2
<=> x1 = 2 atau x2 = -6
jadi himpunan penyelesaiannya adalah {2,-6}
4. Tentukan persamaan kuadrat yang akar-akarnya 2 dan 5?
Jawab :
Cara 1 : Memakai faktor, dengan memasukkan nilai akar kedalam rumus (x-x1) (x-x2) = 0
x1 = 2 dan x2 = 5
Maka (x-x1) (x-x2) = 0
<=> (x-2) (x-5) = 0
<=> x2 – 7x + 10 = 0
Jadi persamaan kuadratnya x2 – 7x + 10 = 0
Cara 2 : Memakai rumus jumlah dan hasil kali akar-akar yaitu x2 – (x1+x2)x + x1.x2 = 0
x1 = 2 dan x2 = 5
Maka x2 – (x1+x2)x + x1.x2 = 0
Dengan (x1 + x2) = 2 + 5 = 7
x1. x2 = 2.5 = 10
Jadi persamaan kuadratnya x2 – 7x + 10 = 0
Rumus jumlah dan hasil kali akar-akar diperoleh dari penjumlahan dan perkalian rumus abc, perhatikan penjelasan berikut ini.
x1 + x2 = -b + √ b2 – 4ac + – b – √ b2 – 4ac
2a 2a
= -2b/a
= -b/a
x1 .x2 = -b + √ b2 – 4ac . – b – √ b2 – 4ac
2a 2a
= ( b2 – (b2 – 4 ac)) / 4a2
= 4ac /4a2
= c/a
Dari rumus umum persamaan kuadrat y=ax²+bx+c=0, jika kita mencari akar-akar menggunakan pemfaktoran b diperoleh dari penjumlahan akar-akar dan c diperoleh dari perkalian akar-akar ( baca kembali metode penyelesaikan persamaan kuadrat diatas) sehingga kita dapat memperoleh pernyataan
x2 – (x1 + x2) x + x1.x2 = 0
Sekian dulu penjelasan mengenai Persamaan Kuadrat, semoga bermanfaat dan jika sobat menemukan ada yang kurang pas, mohon koreksinya ya….. dan jangan lupa baca juga Materi Bilangan Kompleks atau Fungsi Eksponen dan Logaritma.
Persamaan Kuadrat merupakan suatu persamaan polinomial berorde 2 dengan bentuk umum dari persamaan kuadrat yaitu y=ax²+bx+c dengan a≠0 dan koefisien kuadrat a merupakan koefisien dari x², koefisien linear b merupakan koefisien dari x sedangkan c adalah koefisien konstan atau biasa juga disebut suku bebas. Nilai koefisien a, b dan c ini yang menentukan bagaimana bentuk parabola dari fungsi persamaan kuadrat dalam ruang xy.
a. Menentukan seberapa cekung/cembung, jika nilai a>0 maka parabola akan terbuka keatas. Begitu juga sebaliknya jika a<0 akan="" kebawah.="" maka="" p="" parabola="" terbuka="">
0>
b. Menentukan posisi x puncak parabola atau sumbu simetri dari kurva yang dibentuk, dengan posisi tepatnya -b/2a.
c. Menentukan titik potong fungsi parabola yang dibentuk dengan sumbu y atau pada saat x=0.
Rumus Kuadratis
Rumus ini biasa disebut juga dengan rumus abc, disebut demikian karena digunakan untuk menghitung akar-akar persamaan kuadrat yang tergantung nilai-nilai a, b dan c.
dengan pembuktian sebagai berikut.
Dari bentuk umum persamaan kuadrat,
bagi kedua ruas untuk mendapatkan a = 1
Pindahkanke ruas kanan
sehingga teknik melengkapkan kuadrat bisa digunakan di ruas kiri.
Pindahkan ke ruas kanan
lalu samakan penyebut di ruas kanan.
Kedua ruas diakar (dipangkatkan setengah), sehingga tanda kuadrat di ruas kiri hilang, dan muncul tanda plus-minus di ruas kanan.
Pindahkanke ruas kanan
sehingga didapat rumus kuadrat
Pada rumus abc diatas terdapat istilah diskriminan atau determinan yaitu notasi dalam tanda akar b²-4ac yang terkadang dinotasikan dengan huruf D.
Persamaan kuadrat dengan koefisien-koefisien riil dapat memiliki sebuah atau dua buah akar yang berbeda dimana akar-akarnya dapat berupa bilangan riil atau bilangan kompleks. Terdapat 3 kemungkinan kasus :
- Diskriminan bersifat positif, maka akan terdapat dua akar berbeda dan keduanya riil. Untuk persamaan kuadrat yang koefisiennya berupa bilangan bulat dan diskriminanya adalah kuadrat sempurna maka akar-akarnya adalah bilangan rasional, atau sebaliknya dapat pula merupakan bilangan irasional kuadrat.
- Diskriminan bernilai 0 maka akan terdapat eksak satu akar dan riil. Hal ini terkadang disebut sebagi akar ganda, dimana nilainya adalah akar
- Diskriminan bernilai negatif maka tidak terdapat akar riil melainkan terdapat 2 buah akar kompleks yang satu sama lain merupakan konjuget kompleks.
Terdapat 3 cara dalam menyelesaikan persamaan kuadrat, yaitu :
- Memfaktorkan, untuk bentuk persamaan kuadrat ax²+bx+c=0 maka kita harus menentukan dua buah bilangan yang jika dijumlahkan hasilnya b dan dikalikan menghasilkan c.
- Melengkapkan kuadrat sempurna, merubah bentuk persamaan kuadrat menjadi bentuk kuadrat sempurna.
- Menggunakan rumus abc.
Jawab :
x2 – 5 x + 6 = 0 (cara memfaktorkan)
<=> ( x-2 ) ( x-3 ) = 0
<=> x- 2 = 0 atau x – 3 = 0
<=> x = 2 atau x = 3
Sehingga himpunan penyelesaiannya adalah {2, 3}
2. Tentukan himpunan penyelesaian dari persamaan x2 + 2x – 15 = 0 !
Jawab : x2 + 2x – 15 = 0 (cara melengkapkan kuadrat sempurna)
x2 + 2x = 15
Agar x2 + 2x menjadi bentuk kuadrat sempurna maka harus ditambah dengan kuadrat dari setengah koefisien (½ .2)2 = 1
Dengan menambahkan 1 pada kedua ruas, diperoleh :
x2 + 2x + 1 = 15 + 1
<=> (x + 1)2 = 16
<=> x + 1 = ± √16
<=> x + 1 = ± 4
<=> x + 1 = 4 atau x + 1 = -4
<=> x = 4 – 1 atau x = -4 -1
<=> x = 3 atau x = -5
Sehingga himpunan penyelesaiannya adalah {3, -5}
3. Tentukan himpunan penyelesaian persamaan x2 + 4x – 12 = 0 !
Penyelesaian : (menggunakan rumus abc)
Berdasarkan persamaan diketahui bahwa a =1, b = 4, c = -12 selanjutnya koefisien tersebut kita masukkan dalam rumus abc.
x1,2 = (- b ± √b2 – 4ac) /2a
<=> x1,2 =( - 4 ± √42 – 4 . 1. (-12) )/2.1
<=> x1,2 = (- 4 ± √16 + 48)/2
<=> x1,2 = (- 4 ± √64)/2
<=> x1,2 = (- 4 ± 8)/2
<=> x1,2 = (- 4 + 8) /2 atau x1,2 = (- 4 - 8 )/2
<=> x1 = 2 atau x2 = -6
jadi himpunan penyelesaiannya adalah {2,-6}
4. Tentukan persamaan kuadrat yang akar-akarnya 2 dan 5?
Jawab :
Cara 1 : Memakai faktor, dengan memasukkan nilai akar kedalam rumus (x-x1) (x-x2) = 0
x1 = 2 dan x2 = 5
Maka (x-x1) (x-x2) = 0
<=> (x-2) (x-5) = 0
<=> x2 – 7x + 10 = 0
Jadi persamaan kuadratnya x2 – 7x + 10 = 0
Cara 2 : Memakai rumus jumlah dan hasil kali akar-akar yaitu x2 – (x1+x2)x + x1.x2 = 0
x1 = 2 dan x2 = 5
Maka x2 – (x1+x2)x + x1.x2 = 0
Dengan (x1 + x2) = 2 + 5 = 7
x1. x2 = 2.5 = 10
Jadi persamaan kuadratnya x2 – 7x + 10 = 0
Rumus jumlah dan hasil kali akar-akar diperoleh dari penjumlahan dan perkalian rumus abc, perhatikan penjelasan berikut ini.
x1 + x2 = -b + √ b2 – 4ac + – b – √ b2 – 4ac
2a 2a
= -2b/a
= -b/a
x1 .x2 = -b + √ b2 – 4ac . – b – √ b2 – 4ac
2a 2a
= ( b2 – (b2 – 4 ac)) / 4a2
= 4ac /4a2
= c/a
Dari rumus umum persamaan kuadrat y=ax²+bx+c=0, jika kita mencari akar-akar menggunakan pemfaktoran b diperoleh dari penjumlahan akar-akar dan c diperoleh dari perkalian akar-akar ( baca kembali metode penyelesaikan persamaan kuadrat diatas) sehingga kita dapat memperoleh pernyataan
x2 – (x1 + x2) x + x1.x2 = 0
Sekian dulu penjelasan mengenai Persamaan Kuadrat, semoga bermanfaat dan jika sobat menemukan ada yang kurang pas, mohon koreksinya ya….. dan jangan lupa baca juga Materi Bilangan Kompleks atau Fungsi Eksponen dan Logaritma.
Tautan kumpulan rumus matematika lainnya:
Cara cepat membaca tabel trigonometri
Video cara cepat pembagian praktis
Rumus operasi hitung pada pecahan
Rumus mencari fpb dan kpk
Materi Barisan dan Deret Aritmatika
Rumus Logaritma Dasar
Rumus Limas Segitiga dan Limas Segiempat
Rumus Menghitung Statistika Dari Data Tunggal
Kumpulan Rumus Segitiga Lengkap
Pengertian dan Metode Kuadrat
Rumus Persamaan Dan Pertidaksamaan Linear
Mengulas Soal Matematika Tentang "SKALA" Matematika SD Kelas VI
Rumus, Contoh Soal, Pembahasan Soal Matematika SMP/Mts Kelas VIII (Sesuai Kurikulum 2013)
Download Buku Mahir Matematika SMA
Download Rumus-rumus Matematika SMA Kelas XI (lengkap)
Rahasia Rumus-rumus “Cepat” Matematika
Matematika Realistik
Rumus Logika Matematika Dasar
Mengenal Statistika - Desil Pada Data Tunggal
Latihan Soal Bilangan Berpangkat Khusus Khusus Kelas X SMA
Dua Bangun Datar yang Kongruen
Download Kumpulan Rumus Pemecahan Soal-soal Matematika SMP Kelas VIII
Bilangan Bulat dan Lambangnya (Rumus Matematika SMP)
Rumus Operasi Hitung Campuran pada Pecahan (Rumus Matematika SMP)
Bagian-bagian Lingkaran dan Rumus-rumusnya
Memahami Ukuran Perumusan Data (Rumus Matematika)
Mudah Hitung Cepat Matematika
Rumus Luas Permukaan Tabung / Rumus Google
Rumus Matematika SMP Sesuai dengan Kurikulum 2013
Download Rumus Matematika SMA Kurikulum 2013
Pengenalan Aljabar
PERSAMAAN GARIS DAN GRADIEN
Kumpulan Rumus Matematika Lengkap
Rumus Matematika Praktis
TERIMA KASIH ATAS KUNJUNGAN SAUDARA
Judul: Pengertian dan Metode Kuadrat
Ditulis oleh DOWNLOAD SOAL UJIAN NASIONAL
Rating Blog 5 dari 5
Semoga artikel ini bermanfaat bagi saudara. Jika ingin mengutip, baik itu sebagian atau keseluruhan dari isi artikel ini harap menyertakan link dofollow ke http://download-soal.blogspot.com/2013/10/pengertian-dan-metode-kuadrat.html. Terima kasih sudah singgah membaca artikel ini.Ditulis oleh DOWNLOAD SOAL UJIAN NASIONAL
Rating Blog 5 dari 5